
ASA-T?4-111482

Learning Classification Trees

WRAY BUNTINE
AI RESEARCH BRANCH, MAIL STOP 269-2

NASA AMES RESEARCH CENTER
MOFFETT FIELD, CA 94025, USA

I ' I

NASA Arnes Research Center
Artificial Intelligence Research Branch

Technical Report FIA-91-30

April, 1991

Learning Classification Trees

Wray Buntine
wray@kronos. arc.nasa.gov

RIACS & NASA Ames Research Center
Mail Stop 269-2, Moffet Field, CA 94035, USA

November 20, 1991

Abstract

Algorithms for learning cIassification trees have had successes in ar-
tificial intelligence and statistics over many years. This paper outlines
how a tree learning algorithm can be derived using Bayesian statis-
tics. This iutroduces Bayesian techniques for splitting, smoothing, and
tree averaging. The splitting rule is similar to QuinIan’s information
gain, while smoothing and averaging replace pruning. Comparative ex-
periments with reimplementations of a minimum encoding approach,
Quinlan’s C4 (1987) and Breiman et aL’s CART (1984) show the full
Bayesian algorithm produces more accurate predictions than versions
of these other approaches, though pays a computational price.

Keywords: classification trees, Bayesian statistics

To appear in:

Artificial Intelligence and Statistics
1992
Ed. D. Hand
(Proc. of Conf. on AI & Stats., Florida, 1 9 9 1 .)

Contents

1 Introduction 3

2 Theory 5
2.1 Basic Framework . 6
2.2 Priors . 7
2.3 Posteriors . 9

3 Methods 11
3.1 Treegrowing . 11
3.2 Tree smoothing . 14
3.3 Option trees and. averaging 17

4 Comparison 19
4.1 Experimental setup . 19
4.2 Results . 20
4.3 Discussion . 21

5 Conclusion 22

List of Figures
1

2

A decision tree and a class probability tree from the thyroid

A class counts tree from the congressional voting application
application . 4

3 The intermediate calculation tree 17
4 The averaged class probability tree 18

16

5 A class probability option tree from the iris application . . . 27

List of Tables
1 Performance statistics . 28

2

1 Introduction

A common inference task consists of making a discrete prediction about
some object given other details about the object. For instance, in financial
credit assessment as discussed by Carter and Catlett (1987) we wish to de-
cide whether to accept or reject a customer’s application for a loan given
particular personal information. This prediction problem is the basic task of
many expert systems, and is referred to in AI as the classification problem
(where the prediction is referred to as the classification). The task is to learn
a classifier given a training sample of classified examples. In credit assess-
ment, classes are “accept” and “reject” (the credit application). A training
sample in this case would be historical records of previous loan applica-
tions together with whether the loan went bad. This generic learning task
is referred to as supervised learning in pattern recognition, and induction
or empirical learning in machine learning, see for instance Quinlan (1986).
The statistical community uses techniques such as discriminant analysis and
nearest neighbor methods, for instance described by Ripley (1987).

This prediction problem is often handled with purtitioning classifiers.
These classifiers split the example space into partitions, for instance, Quin-
lan’s ID3 (1986) and Breiman, Friedland, Olshen and Stone’s CART (1984)
use classification ‘trees to recursively partition the example space and Clark
and Niblett’s CN2 (1989) and Weiss et d . ’ s PVM (1990) use disjunctive rules
(disjunctive rules also partition a space, but not recursively in the manner of
trees). Tree algorithms build trees such as the ones shown in Figure 1. The
medical tree shown on the left has the classes hypo (hypothyroid) and not
(not hypothyroid) at the leaves. This tree is referred to as a decision tree
because decisions about class membership are represented at the leaf nodes.
Notice that the first test, T S H > 200, is a test on the real valued attribute
T S H . An example is classified using this tree by checking the current test
and then falling down the appropriate branch, until a leaf is reached. In
this way an example falls down a single branch to arrive at a leaf where
it is classified. In typical problems involving noise, class probabilities are
usually given at the leaf nodes instead of class decisions, forming a class
probability tree (where each leaf node has a vector of class probabilities). A
corresponding class probability tree is given in the right of Figure 1. The
leaf nodes give predicted probabilities for the two classes. Notice that this
tree is a representation for a conditional probability distribution of class
given information higher in the tree. f will only be concerned with class
probability trees in this paper since decision trees are a special case. The

3

Figure 1: A decision tree and a class probability tree from the thyroid
application

tree-based approaches have been pursued in many areas such as applied
statistics, character recognition and information theory for well over two
decades. Perhaps the major classical statistics text in this area is Breiman
et al. (.1984), and a wide variety of methods and comparative studies exist
in other areas. For instance, see Quinlan (1988), Ivlingers (1989b), Buntine
(1991b), Bahl, Brown, De Souza and Mercer (1989), Quinlan and Rivest
(1989), Crawford (1989) and Chou (1991).

The standard approach to building a class probability tree consists of
several stages: growing, pruning, and sometimes smoothing or averaging.
A tree is first grown to completion so that the tree partitions the training
sample into terminal regions of all one class. This is usually done from the
root down using a recursive partitioning algorithm. Choose a test for the
root node to create a tree of depth one and partition the training set among
the new leaves just created. Now apply the same-algorithm recursively to
each of the leaves. The test is chosen at each stage using a greedy one-
ply lookahead heuristic. Experience has shown that a tree so grown will
suffer from over-fitting, in the sense that nodes near the bottom of the tree
represent noise in the sample, and their removal can often increase predictive
accuracy, see Quinlan (1986) for an introduction. To help overcome this
problem, a second process is subsequently employed to pmne back the tree,
for instance using resampling or hold-out methods, such as Breiman et al.
(1984) or Crawford (1989), approximate sigmficance tests such as Quinlan

4

(1988) or Mingers (1989a), or minimum encoding such as Quinlan and Rivest
(1989). The p m e d tree may still have observed class probabilities at the
leaves with zeroes for some classes, an unrealistic situation when noisy data
is being used. So smoothing techniques described by Bahl et ai. (1989) and
Chou (1991), explained later, are sometimes employed to make better class
probability estimates. A final technique from Kwok and Carter (1990) is to
build multiple trees and use the benefits of averaging to arrive at possibly
more accurate class probability estimates.

This paper outlines a Bayesian approach to the problem of buildin, trees
that is related to the minimum encoding techniques of Wallace and Patrick
(1991) and Rissanen (1989). These two encoding approaches are based on
the idea of the “most probable model”, or its logarithmic counterpart, the
minimum encoding. But the approaches here average over the best few mod-
els using two techniques, the simplest is a Bayesian variant of the smoothing
technique of Bahl et al. (1989). A fuller discussion of the Bayesian methods
presented here, including the treatment of real values and extensive compar-
ative experiments, is given by Buntine (1991b). The current experiments
are described in more detail by Buntine (1991a). Source code and manual
for the implementations and reimplementations are available in some cases
as the IND Tree Package by Buntine and Caruana (1991).

2 Theory

This section introduces the notation, the priors and the posteriors for the
prediction task just described. This develops the theoretical tools on which
the Bayesian tree learning methods are based. The section largely assumes
the reader is familiar with the basics of Bayesian analysis, that is, the ap-
plication of Bayes theorem, the notion of subjective priors, etc. See for
instance, Press (1989) or Lee (1989). In what follows, the term “prior” is
an abbreviation for “prior probability distribution”. Likewise for posterior.
The prior and the posterior are both subjective Bayesian probabilities or
measures of belief, and so do not correspond to measurable frequencies.

If the loss function to be used is minimum errors in prediction, we need
to determine, given a new unclassified example, which class has maximum
posterior probability of being true. In the Bayesian framework with trees
used to represent knowledge about making predictions, this task involves
determining posterior probabilities for different tree structures and class
proportions, and then returning the posterior class probability vector for

5

the new example based on posterior probability averaged over all possible
trees. The mathematics of this process is outlined in the next few sections.

2.1 Basic Framework

To reason about posterior probabilities of class probability trees conditioned
on a training sample, we need to separate out the discrete and the contin-
uous components of a class probability tree. These need to be modeled by
probability functions, and probability density functions respectively.

A class probability tree partitions the space of examples into disjoint
subsets, each leaf corresponding to one such subset, and associates a condi-
tional probability rule with each leaf. Denote the tree structure that defines
the partition by T ; this is determined by the branching structure of the tree
together with the tests made at the internal nodes. Suppose there are C
mutually exclusive and exhaustive classes, d l , . . . , d c . The probabilistic rule
associated with each leaf can be modeled as a conditional probability distri-
bution. Suppose example z falls to leaf I in the tree structure T . Then the
tree gives a vector of class probabilities 4jjS for j = 1,. . . , C, which give the
proportion of examples at the leaf that have class d j . A class probability tree
then corresponds to a (discrete) tree structure T , together with the (contin-
uous) matrix of cEass proportions 9~ = {4j,l : j = 1, . . . , C , I E Ieaves(T)}.
If the choice of a test at a node requires selecting a “cut-point”, a real value,
as is the test at the root of the tree in Figure 1, then this framework needs to
be modified. The “cut-points” chosen are continuous, not discrete parame-
ters, so their specification involves additional continuous parameters for the
tree structure T . A tree T , 9~ therefore represents a conditional probability
distribution for class c given example z of the form

where example 2 falls to leaf I in the tree structure T .
For the learning problem, we are given a training sample Z, c‘consisting of

N examples z i with known classification given by class values c;. Examples
and their classes are assumed to be generated identically and independently.
The distribution of a single classifled example z,c can be specifled by a
probability distribution on the example, about which we have little concern,
together with a conditional probability distribution on the class c given the
example 2, which corresponds to the class probability tree. Given a sample
consisting of N examples 5 with known classification c‘, we are interested

G

in determining the posterior distribution of class probability trees given the
training sample. This distribution can be found using Bayes theorem:

lEleaues(T) j=l

where nj,l is the number of examples of class d j falling in the Z-th leaf of
the tree structure T . The probability Pp(T, GT I 5) I refer to as the prior,
because even though it is conditioned on the unclassified examples Z, below
I assume independence from these unclassified examples.

2.2 Priors

There are many different priors that could be used for trees. Entropic argu-
ments like Rodriguez (1990) suggest that leaves should have more extreme
probabilities (closer to zero and one) when the leaf is more infrequent (fewer
examples occur at the leaves), for instance, lower down the tree. Trees tend
to fracture the example space unnecessarily, referred to by Pagallo and Haus-
sler (1990) as the replication problem, because some tests higher in the tree
are unnecessary for some (but not all) of the lower leaves. For this reason,
we might expect class probabilities to be similar across different l e d nodes.
Smoothness arguments also suggest that class probabilities for neighboring
leaves in the tree might be more similar on average then for unrelated leaves.
We therefore might use a hierarchical prior that relates class probabilities
across leaves.

Rather than these, I use priors that have a simple conjugate (that is,
the prior is the same functional form as the likelihood function, see Berger
(1985)) and multiplicative form. Generic representation-independent tech-
niques for ‘forming priors, such as Rodriguez’s entropic priors and smoothing
priors described by Buntine and Weigend (1991), yield priors that lack the
sample form I use. But although our motivation for choice of priors is expedi-
ency, I believe they are reasonable “generic” priors for many circumstances.

Consider a prior consisting of a term for the tree structure and a term

7

for the class proportions at each leaf given by

(1)
This assumes Merent class probability vectors at the leaves are a priori
independent. Although this contradicts our intuitions described above, it
does not add any incorrect information a prior. Bc is the C-dimensional
beta function defined by

and I' is the gamma function, for instance, r(n) = (n - l)!. The terms
indexed by I in Equation (1) is a Dirichlet distribution (a C-dimensional
variant of the two-dimensional beta distribution). Let a0 = xFZl aj. The
Dirichlet terms ensure that the class probability vectors at each leaf I center
about a common mean

(5, . . . I ")
a 0 a 0

with standard deviation proportional to -&. I take an empirical Bayes
approach (see Berger (1985)) and set the common mean to the observed
common mean in the training sample. Because of the sample size, this should
be close to the population base-rate. The "prior weight" parameter a0 is
then set according to how much we expect a pn'on' the class probabilities
at leaves to vary from the base-rate class probabilities. A value of a0 = 1
means we expect class probabilities to differ strongly from the base-rate,
and a value of a0 = C means we expect mild difference.

I use several choices for the prior on the tree structure TI PT(T). Each
of these priors are multiplicative on the nodes in the tree, so the posterior,
given later, is also multiplicative on the nodes in the tree. Also, the priors
I-III presented are not normalized as their later use does not require it, and
prior I is a special case of prior II.

I : Each tree structure is equally likely, PT(T) is constant.

I1 : Give a slight preference to simpler trees, such as PT(T) o(wldea(T)I,
for w < 1. This means every node in the tree makes the tree a factor
of w less likely a priori.

I11 : The tree shapes (tree structure minus choice of tests at internal nodes)
are equally likely.

1
P T (T) c(II

nEmdes(T)-Ieaues(T)

This means we have a uniform prior on the number of tests that will
be made on an example to determine its class probability.

IV : Tree structures are coded using bits for “node”, “leaf”, and “choice
of test”. This is a combination of type II and 111 priors together with
“encoding” of cut-points. See Rissanen (1989, p.165) or Wallace and
Patrick (1991) for details.

The priors have been given in increasing strength, in the sense that type Tv
priors represent an extreme preference for simpler trees, but type I priors
represent no such preference. In medical data, for instance, where many
of the attributes supplied for each example may well be noise, we would
expect the stronger priors to be more reasonable. In problems like the classic
faulty LED problem of Breiman et al. (1984), we would expect all faulty
LED indicators to be somewhat informative about the actual digit being
represented, so large trees seem reasonable and the type I prior should be
used.

Clearly, many variations on these priors are possible without departing
from the basic conjugate and multiplicative form. Certain attributes could
be penalized more than others if it is believed u prior that those attributes
are not as effective in determining class. The prior weight a0 could vary
from node to node, for instance becoming smaller lower down the tree. Our
claim, however, is that the priors described above are an adequate family of
mildly-informative tree priors for the purposes of demonstrating a Bayesian
approach to learning tree classifiers.

2.3 Posteriors

Using standard properties of the Dirichlet distributions, given by Buntine
(1991b, Sec.2.5), posteriors conditioned on the training sample can now be
computed as follows.

Pr(T, ST I I , c‘) = PT(T I z, 4 PT(%T I 5, c‘, T) ,

9

C

One important property of these posteriors is that they are multiplicative on
the nodes in the tree whenever the prior is also multiplicative on the nodes.
This means posteriors for a collection of similar trees can be efficiently added
together using an extended distributive law as described below in Section 3.2.
A second important property is that the discrete space of tree structures
is combinatoric, and only partially ordered. This means for smaller data
sets we might expect to have very many different trees with a similar high
posterior. In contrast, consider the space of polynomials of a single variable.
This is a linearly ordered discrete space, so we can expect polynomials with
a high posterior to be polynomials of a similar order.

Posterior expected values and variances for the proportions %T can be
deduced from the posterior using standard properties of the Dirichlet dis-
tribution. I use the notation E+ (z (x , y)) to denote the expected value of
t (x , y) according to the distribution for x conditioned on knowing y. For
instance, the posterior expected class proportions given a particular tree

C where n.,i = nj,r and a0 = ai.

sample size at each leaf (n ~) is large using Sterling's approximation.
The log-posterior for the tree structure can be approximated when the

- log PT(T I 5, t') e -log P T (T) + N . I(CIT) + constant , (4)

where the dominant term I (C I T) represents the expected information
gained about class due to making the tests implicit in the tree structure T.
That is:

The function I used here is the standard information or entropy function
over discrete probability distributions. The information measure I (C I T)
when applied to a tree of depth one is used by Quinlan (1986) as a splitting
rule when growing trees. If some leaves have small numbers of examples,
then Approximation (4) is poor, and the beta function really needs to be
used. The beta function then has the effect of discounting leaves with small
example numbers.

10

3 Methods

To implement a full Bayesian approach, we need to consider averaging over
possible models, as for instance approximated by Kwok and Carter (1990), or
done by Stewart (1987) using Monte Carlo methods. This section introduces
methods closer in spirit to Henrion (1990) who collects the dominant terms
in the posterior s u m . Fuller details of the methods described below are given
by Buntine (1991b).

Intuitively, this full Bayesian approach involves averaging all those trees
that seem a reasonable explanation of the classifications in the training s a m -
ple, and then predicting the class of a new example based on the weighted
predictions of the reasonable trees. This estimates the posterior probability
conditioned on the training sample that a new example 2 will have class c
by the formula:

where the summations are over all possible tree structures, and Zeaf(z,T)
denotes the unique leaf in the tree T to which the example z falls. Notice
that the denominator of the right hand side of Equation (5) can be simplified
to 1.0. However, when approximating the summations with a reduced set
of tree structures as done below, this full form is required to normalize the
result.

Given the combinatoric number of tree structures, such a calculation is
not feasible. There are three computationally reasonable approximations to
this general formula that can be made by restricting the summations to a
reduced subset of tree structures. The first corresponds to a maximum a
posterior approximation, and the second and third, described below, collect
more dominant trees from the a posterior s u m . To collect these dominant
trees however, we first have to find high a posterior trees. The growing
method described in Section 3.1 describes how.

.

3.1 Tree growing

Formula (2) suggests a heuristic for growing a tree in the standard recursive
partitioning algorithm described in the introduction. When expanding the
(single) current node, for each possible test grow a tree of depth one at that
node by extending it one more level. Then choose the new test yielding a

11

tree structure with the maximum posterior probability. Because the poste-
rior is multiplicative, we only need look at that component of the posterior
contributed by the new test and its leaves. The one-ply lookahead heuristic
for evaluating a test then becomes:

(6)
where Pr(test) is the contribution to the tree prior, outcomes(test) is the set
of test outcomes, and n j , ~ is the number of examples in the training sample
at the current node with class j and having test outcome 1. So the n j , ~ are
also a function of the test. The subscript 1 is there in Qualityl(test) to
remind us that this is a l-ply lookahead heuristic. Computation should be
done in log-space to avoid underflow. A test should be chosen to maximize
Formula (6).

If the test being evaluated contains a cut-point, as does the test at the
root of the tree in Figure 1, then this too should be averaged over. For-
mula (6) in this case represents an evaluation of the test conditioned on
knowing the cut-point. Since we have the freedom to chose this as well, so
we should calculate the expected value of Formula (G) across the full range
of cut-points. Suppose we assume all cut-points are a priori equally likely
between a minimum and maximum value, then for real valued attribute R,
the quality of a cut-point test on R, denoted cut-point(R) is given by,

Q d i t y l (cut-point(R)) =
1 ma%(R)

Qualityl(R < cut) dcut (7) J m a ~ (R) - min(R) cut=min(R)

This test adds a penalty factor, given by
quality of the best cut, best-cut. This
of encoding the cut-point”, added by Quinlan and Rivest in their minimum
encoding approach (1989). While this evaluates the average quality of the
cut-point test, we also need to select a cut point. Iuse the cut that maximizes
the quality test Qualityl(R < cut).

Experiments show the quality heuristic of Equation (6) is very similar in
performance to the information gain measure of Quinlan (1986) and to the
GINI measure
explains why.
of returning a

of Breiman et aI.’s CART (1984). The Approximation (4)
The quality measure has the distinct advantage, however,
measure of quality that is a probability. This can be used

12

to advantage when either growing trees from a very large training sample,
growing trees incrementally, or when after a stopping or pre-pruning rule.

When determining the test to make at a node using a one-ply lookahead
heuristic, we need to do O (A N) operations, or O(AN1ogN) if a sort is
involved, where N is the size of the sample at that node, and A is the
number of potential tests. To reduce computation for very large N , we
could evaluate the tests on a subset of the sample (i.e. reduce N in the
computation), as suggested by Breiman et al. (1984) and Catlett (1991).
Because the measure of quality is in units of probability, one can readily
determine if one test is significantly better than another according to the
measure simply by taking their ratio. This can be used to determine if
evaluation on the current subsample is sufficient, or if we need to view a
larger subsample.

A related problem occurs when growing trees incrementally. In this
regime, a tree needs to be updated given some additions to the training
sample. Crawford (1989) shows that if we take the naive approach as done
by Utgoff (1989) and attempt to update the current tree so the “best” split
according to the updated sample is taken at each node, the algorithm suffers
from repeated restructuring. This occurs because the best split at a node
vacillates while the sample at the node is still small. To overcome this
problem Crawford suggested allowing restructuring only if some other test
was currently significantly better than the current test at the node. We
also need a test to determine whether the test at a node should be fixed
and not changed thereafter, despite new data. Crawford used a relatively
expensive resampling approach to determine significance of splits, but the
probabilistic quality measure of Formula (6) can be used instead without
further modification.

The quality heuristic can also be improved using an N-ply lookahead
beam search instead of the l-ply. In this, I use the 1-ply quality test to
obtain a few good tests to make up the search "beam" at this level. I
currently use a beam (search width) of 4. I then expand these tests, do an
N - l-ply lookahead beam search at their children to find the best tests for
the children, and finally propagate the quality of the children to calculate a
quality measure corresponding to Equation (2) for the best subtree grown.
This means at the cost of computation we can do more extensive search.

13

3.2 Tree smoothing

The simplest pruning approach is to choose the maximum a posteriori tree.
Of all those tree structures obtained by pruning back the complete grown
tree, pick the tree structure with maximum posterior probability, Pr(T I
i , q . This pruning approach was tried with a range of different priors and
the approach was sometimes better in performance than Quinlan's C4 or
Breiman et d ' s CART, and sometimes worse. With careful choice of prior,
this "most probable model" approach was often better, however it was un-
duly sensitive to the choice of prior. This suggests a more thorough Bayesian
approach is needed.

The first approximation to the sum of Equation (5) I call Bayesian
smoothing. The standard approach for classifying an example using a class
probability tree is to send the example down to a leaf and then return the
class probability at the leaf. In the smoothing approach, I also average all
the class probability vectors encountered at interior nodes along the way, see
Bahl et al. (1989, ~1005) . Given a particular tree structure T', presumably
grown using the algorithm described in Section 3.1, consider the space of
tree structures, pruned(T'), obtained by pruning the tree structure T' in all
possible ways. If we restrict the summation in Equation (5) to this space and
the posterior on the tree structure is a multiplicative function over nodes in
the tree, then the s u m can be recursively calculated using a grand version of
the distributive law. The s u m is computable in a number of steps linear in
the size of the tree. The s u m takes the form of an average calculated along
the branch traversed by the new example.

1 (8)
nj ,n + aj

n.,n + - - Pr(n is leaf I 5, c',ppTuning of T')
ne ttauer sed(=,TI)

where t.raversed(z,T') is the set of nodes on the path traversed by the
example z as it falls to a leaf, and PT(n is leaf I Z, c',ppruning o f T') is the
posterior probability that the node n in the tree T' will be pruned back to
a leaf given that the "true" tree is a pruned subtree of T'. It is given by

Pr(n is leaf I Z,c',ppTuning of T') =
CPr(l ea f (n) , i , t ?) / SPT(Z",Z,~?)

14

IT
OEanceatora(T',n)

CPT(node(0)) n
3 E chi ldren(0)
B # ch i ld (0 , x)

where ancestors(T',n) is the set of ancestors of the node n in the tree T',
chiId(0, z) is the child tree of the node 0 taken by the example z during
traversal, chiZdren(0) is the set of children trees of the node 0,

CPT(node(T)) is the component of the tree prior due to the internal node
at the root of T, for instance 1 for type I priors and #paaibh at d e (T)
for type 111 priors. For nl ,~ , . . . , nc,1 the class counts at the node T,

1

where CPT(leaf(T)) is the multiplicative component of the tree prior due
to the leaf T, for instance 1 for type I priors and w for type 11 priors. Cut-
points are currently handled by multiplying in the penalty factor described
in Section 3.1 with CPT(node(T)).

For example, consider the tree given in Figure 2. This is grown from
data about congressional voting. The numbers at the nodes represent class
counts for the number at the node that were democrat and republican re-
spectively. To smooth this counts tree, we first compute the class probabili-
ties for each node, and compute a node probability indicating how strongly
we believe that node n gives appropriate class probabilities, Pr(n is leaf 1
5, c',ppruning of T'). This was done with a1 = a2 = 0.5 and a type 11 tree
prior with w = 0.5, intended to bias against larger trees. The intermediate
tree is given in Figure 3. The probability in brackets at each node represent
the node probability. Notice these s u m to 1.0 along any branch. The two
probabilities below represent the class probabilities for that node for demo-
crat and republican respectively. This intermediate tree allows smoothing as
follows. Suppose we have a politician voting yes on el-salv-aid, educ-spend
and mz-missile. Then the probability the politician is republican is given

15

Figure 2: A class counts tree from the congressional voting application

by running down the right most branch and computing the weighted s u m of
class probabilities.

0.000 *0.35 + 0.355* 0.76 + 0.348*0.88 + 0.296*0.75 = 0.80 .

The final tree after performing this smoothing process is given in Figure 4.
Notice the difference in probabilities for the leaf nodes of the intermediate
class probability tree and the averaged class probability tree. In particular,
notice that for the averaged tree the bottom right test on mx-missile has
all its leaf nodes predict republican. Rather than pruning these three leaf
nodes we can keep them separate because the probabilities for the middle
leaf is quite different from the probabilities for the other leaves. Of course,
since the class counts are all quite small, a change in the prior parameters
aj and w could change the final class probabilities quite a bit.

In experiments with smoothing, sometimes nodes will make so little con-
tribution to the final averaged probabilities that they can be pruned without
much effecting class probabilities of the resultant tree. For instance, this
would happen if the cluster of leaves at the bottom right of Figure 3 under
the test mz-missile all had leafprobabilities of 0.001 instead of 0.29G. This
means the contribution to the s u m in Equation (8) by a traversed node n
and a l l its descendents will be so small that they will have no effect on the
sum. In this case nodes n and below can be pruned.

Experiments reported below showed smoothing often significantly im-

.

Figure 3: The intermediate calculation tree

proved class probability estimates for a class probability tree (for instance,
as measured using the half-Brier score), and sometimes made no sipficant
difference. This happened regardless of the pruning and growing approach
used to construct the original tree. In some cases smoothing is an ade-
quate replacement for tree pruning, compared with the standard pruning
approaches such as pessimistic pruning or cost complexity pnming. How-
ever, for really noisy data using a weak prior, this form of pruning was not
strong enough, whereas, for strongly structured data with a strong prior, the
pruning was too severe due to the choice of prior. The smoothing approach
gives predictions still quite sensitive to the prior, although it was generally
better or at least as good as finding the most probable model.

3.3 Option trees and averaging

The second approximation to the s u m of Equation (5) involves searching for
and compactly storing the most dominant (Le. high posterior) tree structures
in the s u m . The approach involves building option trees znd then doing
Bayesian averaging on these trees. Option trees are a generalization of the
standard tree where options are included at each point. At each interior
node, instead of there being a single test and subtrees for its outcomes,
there are several optional tests with their respective subtrees. The resultant
structure looks like an and-or tree. This is a compact way of representing

17

Figure 4: The averaged class probability tree

many different trees that share common prefixes.
A class probability option tree built from Fisher’s iris data is represented

in Figure 5.
optional test nodes are sometimes exclusively-or’ed together in a cluster.
For instance the very top node of the option tree exclusively-or’s together
two test nodes, petal-width < 8 and petal-length < 24.5. These two tests
in the small ovals are referred to as options because when selecting a single
tree, we are to choose exactly one. Each node is labeled in brackets with
the probability with which the node should be a leaf, which corresponds to
the first probability in Equation (8). These determine the probability of
selecting any single tree. Each node is also labeled with the estimated class
probabilities at the node, used when averaging. The cluster of two tests at
the top is referred to as a node of degree two. So for the top node of degree
two, we should treat it as a leaf with probability 0.0 and otherwise choose
either the test petal-width < 8 or the test petal-length < 24.5. Both options
have subtrees with high probability leaves, so these two optional trees are
about as good as each other. When parts of the option tree are not included
in the figure, the word etc. appears. The bottom cluster of options is a node
of degree four. This has its subtrees excluded from the figure. That this
bottom cluster and its children contain optional tests on all four attributes
indicates that this cluster gives little indication as to which test is more
appropriate, or if any test is appropriate at all.

These trees have leaf nodes and test nodes as be

18

Classification on the resultant structure is done using Equation (5) in a
similar style to Bayesian smoothing. The same formula apply accept that
Equation (9) repeats the second term for every option at the node. Because
this no longer involves dealing with a single tree, I refer to the process of
growing and smoothing as tree averaging.

The current method for growing option trees is primitive yet adequate for
demonstration purposes. Option trees are grown using an N-ply lookahead
as described in Section 3.1. Rather than only growing the best test as
determined by the lookahead, the best few tests are grown as optional tests
at the node. I currently use l-ply or 2-ply lookahead and allow a maximum
of 4 optional tests at each node, retaining only those within a factor of
0.005 of the best test. A depth bound is used to stop growing the tree after
a fixed depth, and this is chosen a prior, although it sometimes had to be
decreased due to a memory/time overrun. Note that these parameters effect
the search, and more search usually leads to better prediction accuracy at
the expense of a larger option tree. For nodes that have large counts, usually
only one test is expanded because all others are insignificant according to
the quality measure. With smaller samples, or in domains where trees are a
poor representation (such as noisy DNF concepts) many tests may be aknost
as good according to the quality measure so many options will be expanded.
This means option trees tend to have more options at the lower nodes where
more uncertainty lies.

4 Comparison

4.1 Experimental setup

Comparative trials were run with the Bayesian algorithms discussed above
and reimplementations of CART, C4, and a generic minimum encoding
method. The versions of CART and C4 were reimplementations by me,
and are known to perform comparably to the original algorithms on the
data sets used. With the CART reimplementation, cost complexity prun-
ing was done with 10-fold cross validation using the O-SE rule. Breiman et
al. suggest this gives the most accurate predictions, and this was confirmed
experimentally. For the Bayesian algorithms, I used either type I or type
II priors with w = 0.5, depending on whether I believed there were many
irrelevant attributes. The prior weight parameter a0 was set depending on
how strongly I believed class probabilities would vary from the base rate.
These prior choices were fixed before running the algorithms. To standardize

19

the experiments, all methods used the tree growing method of Section 3.1.
This behaves similarly to the standard GIN1 and information gain criteria
on binary splits.

Data sets came from different real and simulated domains, and have a
variety of characteristics. They include Quinlan’s hypothyroid and XD6
data (1988), the CART digital LED problem, medical domains reported by
Cestnik, Kononenko and Bratko (19871, pole balancing data from human
subjects collected by Michie, Bain and Hayes-Michie (1990), and a variety of
other data sets from the Irvine Machine Learning Database such as “glass”,
“voting records”, “hepatitis” and “mushrooms”. The “voting” data has
had the attribute “physician-fee-freeze” deleted, as recommended by Michie.
These are available via f t p at i c s . uci . edu in ‘ ‘ /pub y .

For the LED data, a0 = 1 and the type I tree prior was used. This was
because I believe all attributes are relevant and I expect a high accuracy.
Type 11 tree prior was used for the pole balancing, voting and hepatitis
domains because I believe attributes to be only partly relevant. For pole
balancing I was inclined to use a type I prior, however it turned out not to
make much difference. For the hepatitis domain, a0 = 2 because I expected
class probabilities to lie around the population base rate, rather than be
near 0 or 1. For many of these domains depth bounds on option trees were
set at about G.

Data sets were divided into training/test pairs, a classifier was built on
the training sample and the accuracy, predicted accuracy, and half-Brier
score taken on the test sample. The half-Brier scare is an approximate
measure of the quality of class probability estimates, similar to mean-square
error, where smaller is better. This was done for 10 random trials of the
training/test pair, and significance of difference between two algorithms was
checked using the paired t-test. Several different training set sizes were
also tried for each data set to test small and large sample properties of the
algorithms.

Algorithms are part of the IND Tree Package and options used on Version
1.1, more details of the data sets, and acknowledgements to the sources are
given by Buntine (1991a).

4.2 Results

A somewhat random selection of the results are presented in Table 1. The
MSE column refers to half-Brier score. The “Bayes trees’’ methods corre-
sponds to l-ply lookahead growing with Bayesian smoothing.

20

In general, Bayesian option trees and averaging yielded superior predic-
tion accuracy. It was always competitive and usually superior to the other
algorithms. In several cases it was pairwise significantly better than each
of the non-Bayesian approaches at the 5% level. Bayesian option trees and
averaging with a 1-ply and 2-ply lookahead during growing yielded improve-
ment in predictive accuracy averaged over 20 trials as often as high as 2-3%,
sometimes more. Bayesian smoothing on either trees or option trees also
yielded superior half-Brier scores. This is highly significant in most cases,
for instance, even when the prediction accuracy was worse. These results
where consistent across most data sets and sizes, including those not shown
here.

Bayesian option trees and averaging is also quite resilient to the setting
of the prior parameters. Use of either type I or II tree prior often made little
effect. Simple smoothing by contrast was quite sensitive to the prior. The
effects of averaging are clearly important.

4.3 Discussion

With this simple experimental setup, it is difficult to say with conviction
that any one algorithm is “better” than the others, since there are several
dimensions on which learning algorithms can be compared, and there are
combinations of algorithms which were not tried. Prediction accuracy and
half-Brier scores of the Bayesian methods are impressive, however.

Several factors contribute here: The option trees are more than just
a single decision tree, they effectively involve an extension of the model
space, so we are not comparing like with like. The growing of option trees
sometimes involved an extra order of magnitude in time and space, partly
perhaps because of the primitive search used. Option trees do not have the
comprehensibility of normal trees, although I believe this could be arranged
with some post-processing.

While option trees were often significantly better in accuracy by several
percent, it is unclear how much of this is due to the smoothing/averaging
process and how much is due to the improved multi-ply lookahead search
during growing. Initial experiments combining multi-ply lookahead growing
and CART-style cost complexity pruning produced erratic results, and it is
unclear why.

A final point of comparison is the parameters available when driving the
algorithms. CART and C4 have default settings for their parameters. With
CART, heavy pruning can be achieved using the 1-SE rule rather than the

.

21

0-SE rule. The number of partitions to use in cross-validation cost complex-
ity pruning can also be changed, but the effect of this is unclear, especially
since leaving-one-out cross-validation cost complexity pruning gives poor
predictive accuracy. The minimum encoding approaches are (according to
the purist) free of parameters. However, these approaches often strongly
overprune, so Quinlan and Rivest (1989) introduce a parameter that allows
lighter pruning. So all approaches, Bayesian and non-Bayesian, have pa-
rameters that allow more or less pruning that can be chosen depending on
the amount of structure believed to exist in the data. In the fuller Bayesian
approach with option trees and Bayesian averaging, choices available also
allow greater search during growing and fuller elaboration of the available
optional trees. These parameters have the useful property that predictive
accuracy (or some other utility measure) and computational expense are on
average monotonic in the value of the parameter. The parameter setting
allows improved predictive accuracy at computational expense.

5 Conclusion

Bayesian algorithms for learning class probability trees were presented and
compared empirically with reimplementations of existing approaches like
Breiman et d ’ s CART (1984), Quinlan’s C4 (1988) and minimum encod-
ing approaches. The Bayesian option trees and averaging algorithm gave
significantly better accuracy and half-Brier score on predictions for a set of
learning problems, but this was at the expense of computational cost. Bear
in mind the Bayesian algorithms had settings of mild prior parameters made
and undertook considerably more search, whereas the other algorithms were
not tuned in any such way.

First, this work has a number of implications for Bayesian learning.
Simple maximum posterior methods and minimum encoding methods (which
here would choose the single maximum posterior tree) may not perform well
in combinatorial discrete spaces like trees if the prior is not well matched to
the problem. Considerable improvement can be obtained by averaging over
multiple high posterior models. With trees and a multiplicative posterior,
efficient averaging over multiple models is possible. Standard computational
techniques for performing averaging such as importance sampling and Gibbs
sampling or therefore avoided. More sophisticated priors could help here,
but it is surely just as important to consider more versatile classification
models such as the decision trellises suggested by Chou (1991).

22

Second, the Bayesian methods derived here corresponded to a variety
of subtasks previously done by a collection of disparate ad hoc approaches
honed through experience. The splitting rule derived here suggested im-
provements such as multi-ply lookahead search, penalty factors for cut-
points, and a modification for doing learning in an incremental rather than
a batch mode. A comparison with previous pruning and smoothing meth-
ods is difficult because the derived Bayesian methods are highly parametric,
although cost-complexity pruning is in some ways comparable with use of
the type 11 prior. Cross validation is difficult to interpret from a Bayesian
perspective.

More research is needed on these Bayesian methods. Multi-ply looka-
head and smoothing could be combined with CART-style methods. It is
unknown how much smoothing, option trees and multi-ply lookahead each
contribute to the observed gain in prediction accuracy and half-Brier score.
Further priors need to be developed. For instance, the current tree struc-
ture priors are difficult to conceptualize, and the whole Bayesian framework
becomes dubious when priors are not somehow “meaningful” to the user.
More advanced any-time best-first searches could be developed for option
trees, and an importance sampling approach might also compare favorably.

Acknowledgements

Thanks to Peter Cheeseman, Stuart Crawford and Robin Hanson for their
assistance and to the Turing Institute and Brian Ripley at the University of
Strathclyde who sponsored me while much of this research was taking shape.
I am particularly indebted to Ross Quinlan, whose grasp of the tree field
and insistence on experimental evaluation helped me enormously during the
thesis development.

References

Bahl, L., Brown, P., de Soma, P., and Mercer, R. (1989). A tree-based lan-
gauge model for natural language speech recognition. IEEE Transactions
on Acoustics, Speech and Signal Processing, 37(7):1001-10Q8.

Berger, J. 0. (1985). Statistical Decision Theory and Bayesian Analysis.

Breiman, L., Friedman, J., Olshen, R., and Stone, C. (1984). Classification

Springer-Verlag, New York.

and Regression Trees. Wadsworth, Beknont.

23

Buntine, W. (1991a). Some experiments with learning classification trees.
Technical report, NASA Ames Research Center. In preparation.

Buntine, W. (1991b). A Theory of Learning Classification Rules. PhD thesis,
University of Technology, Sydney.

Buntine, W. and Caruana, R. (1991). Introduction to IND and recursive
partitioning. Technical Report FIA-91-28, RIACS and NASA Ames Re-
search Center, Moffett Field, CA.

Buntine, W. and Weigend, A. (1991). Bayesian back-propagation. Complex
Systems.

Carter, C. and Catlett, J. (1987). Assessing credit card applications using
machine learning. IEEE Ezpert, 2(3):71-79.

Catlett, J. (1991). Megainduction: machine learning on very large databases.
PhD thesis, University of Sydney.

Cestnik, B., Kononenko, I., and Bratko, I. (1987). Assistant%: A
knowledge-elicitation tool for sophisticated users. In Bratko, I. and
LavraE, N., editors, Progress in Machine Learning: Proceedings of EWSL-
87, pages 31-45, Bled, Yugoslavia. Sigma Press.

Chou, P. (1991). Optimal partitioning for classification and regression trees.
IEEE Transactions on Pattern Analysis and Machine Intelligence.

Clark, P. and Niblett, T. (1989). The CN2 induction algorithm. Machine
Learning, 3 (4) :2G 1-28 3.

Crawford, S. (1989). Extensions to the CART algorithm. International
Journal of Man-Machine Studies, 31(2):197-217.

Henrion, M. (1990). Towards efficient inference in multiply connected belief
networks. In Oliver, R. and Smith, J., editors, Influence Diagrams, Belief
Nets and Decision Analysis, pages 385-407. Wiley.

Kwok, S. and Carter, C. (1990). Multiple decision trees. In Schacter, R.,
Levitt, T., Kand, L., and Lemmer, J., editors, Uncertainty in Artificial
Intelligence 4. North-Holland.

Lee, P. (1989). Bayesian Statistics: An Introduction. Oxford University
Press, New York.

24

Michie, D., Bain, M., and Hayes-Michie, J. (1990). Cognitive models from
subcognitive skills. In NcGhee, J., Grimble, M., and Mowforth, P., ed-
itors, Knowledge-based Systems for Industrial Control. S tevenage: Peter
Peregrinus.

An empirical comparison of pruning methods for Mingers, J. (1989a).
decision- tree induction. Machine Learning, 4(2):22?-243.

Mingers, J. (1989b). An empirical comparison of selection measures for
decision-tree induction. Machine Learning, 3(4):319-342.

learning. Machine Learning, 5:71-99.
Pagallo, G. and Haussler, D. (1990). Boolean feature discovery in empirical.

Press, S. (1989). Bayesian Statistics. Wiley, New York.

Quinlan, J. (1986). Induction of decision trees. Machine Learning, 1(1):81-

Quinlan, J. (1988). Simplifying decision trees. In Gaines, B. and Boose,
J., eGtors, Knowledge Acquisition for Knowledge-Based Systems, pages
239-252. Academic Press, London.

106.

Quinlan, J., Compton, P., Horn, K., and Lazarus, L. (1987). hductive
knowledge acquisition: A case study. In Quinlan, J., editor, Applications
of Expert Systems. Addison Wesley, London.

Quinlan, J. and Rivest, R. (1989). Inferring decision trees using the mini-
mum description length principle. Information and Computation, 80:227-
248.

Ripley, B. (1987). An introduction to statistical pattern recoedtion. In
Interactions in Artificial Intelligence and Statistical Methods, pages 176-
187, Aldershot, UK. Unicorn, Gower Technical Press.

Bissanen, J. (1989). Stochastic Complexity in Statistical Enquiry. World

Rodriguez, C. (1990). Objective Bayesianism and geometry. In Foug&re, P.,

Stewart, L, (1987). Hierarchical Bayesian analysis using Monte Carlo inte-
gration: computing posterior distributions when there are many possible
models. The Statistician, 363211-219.

Scientific. Section 7.2.

editor, Maximum Entropy and Bayesian Methods. Kluwer.

25

Utgoff, P. (1989). Incremental induction of decision trees. Machine Leanzing,
4(2) :161-186.

Wallace, C. and Patrick, J. (1991). Coding decision trees. Technical Report
151, Monash University, Melbourne.

Weiss, S., Galen, R., and Tadepalli, P. (1990). Maximizing the predictive
value of production rules. Artificial Intelligence, 4547-71.

26

etal-wfdth<l7 tal-lenqth<48

.01 .98 .01

petal-with<l'l tal-lenqth<Sl sepal-lenqh<S7 sepal-lenqthc57

ate. etc. etc. etc. etc. etc. ecc. e$=.

Figure 5: 4 class probability option tree from the iris application

LED I 2-ply option trees 1 100 + 2900 11 15.3sec + 71.4sec I 33.8 f 2.5
LED I CART-like I 900 + 2100 I 1 2.3sec + O.7sec I 25.8 f 0.6

MSE c :::; I
0.55 I
0.51 I
0.51 1
0.45
0.46
0.41
0.26
0.27
0.22
0.21
0.20
0.18
0.16
0.60
0.59
0.56
0.43
0.22
0.22
0.21
0.1G
0.35
0.32
0.26

pole
glass

1-ply option trees 1200 + G47 2G9.8sec + 18.3sec 10.6 f 0.8
C ART-like 100 + 114 4 . 8 . ~ ~ + O.3sec 37.3 f 4.7

--

Table 1: Performance statistics

glass C4-early 100 + 114 1.5sec + 0.3sec 36.2 f 4.3
glass Bayes tree 100 + 114 3.0sec + 0.3sec 36.5 f 5.8
glass 2-ply option trees 100 + 114 469.9sec + 102.lsec 30.5 f 6.0

voting CART- like 200 + 235 1.4sec + O.lsec 12.3 f 1.7
voting CCearly 200 + 235 0.9sec + O.lsec 12.9 f 1.5
voting MDL-like 200 + 235 l.0sec + O.2sec 12.9 f 1.4
voting 1-ply option trees 200 + 235 162.5sec + 18.0sec 10.4 f 1.5

hepatitis CART-test 75 + 70 4.2sec + O.lsec 19.5 f 3.7
he pati tis Bayes tree 75 + 70 1.5sec + O.lsec 23.1 f 4.9
hepatitis 2-ply option trees 75 + 70 131.0sec + 23.lsec 18.8 f 3.6 -

28

